ORing

IES/IGS/IGPS 3000-LA Series

Industrial Managed Ethernet Switch

Function Manual

COPYRIGHT NOTICE

Copyright © 2014 ORing Industrial Networking Corp.
All rights reserved.
No part of this publication may be reproduced in any form without the prior written consent of ORing Industrial Networking Corp.

TRADEMARKS

ORIIng is a registered trademark of ORing Industrial Networking Corp.
All other trademarks belong to their respective owners.

REGULATORY COMPLIANCE STATEMENT

Product(s) associated with this publication complies/comply with all applicable regulations. Please refer to the Technical Specifications section for more details.

WARRANTY

ORing warrants that all ORing products are free from defects in material and workmanship for a specified warranty period from the invoice date (5 years for most products). ORing will repair or replace products found by ORing to be defective within this warranty period, with shipment expenses apportioned by ORing and the distributor. This warranty does not cover product modifications or repairs done by persons other than ORing-approved personnel, and this warranty does not apply to ORing products that are misused, abused, improperly installed, or damaged by accidents.
Please refer to the Technical Specifications section for the actual warranty period(s) of the product(s) associated with this publication.

DISCLAIMER

Information in this publication is intended to be accurate. ORing shall not be responsible for its use or infringements on third-parties as a result of its use. There may occasionally be unintentional errors on this publication. ORing reserves the right to revise the contents of this publication without notice.

CONTACT INFORMATION

ORing Industrial Networking Corp.
3F., NO.542-2, Jhongjheng Rd., Sindian District, New Taipei City 231, Taiwan, R.O.C.
Tel: + 886222181066 // Fax: + 886222181014
Website: www.oringnet.com

Technical Support

E-mail: support@oringnet.com

Sales Contact

E-mail: sales@oringnet.com (Headquarters)
sales@oringnet.com.cn (China)

Table of Content

1.1 Basic Settings 5
1.1.1 System Information 5
1.1.2 Admin \& Password 6
1.1.3 IP Settings 7
1.1.4 IPv6 Settings. 8
1.1.5 Time Setting 8
1.1.6 LLDP 12
1.1.7 Modbus TCP 12
1.1.8 Backup/Restore Configurations 13
1.1.9 Firmware Update 14
1.1.10 Upgrade HTTPS Certificate 14
1.2 Redundancy 15
1.2.1 MRP 15
1.2.2 O-Ring 16
1.2.3 O-Chain 17
1.2.4 RSTP Repeater 19
1.2.5 Fast Recovery 19
1.2.6 RSTP 20
1.2.7 MSTP 22
1.3 Fast Recovery 27
1.4 Multicast 28
1.4.1 IGMP Snooping 28
1.4.2 Static Multicast Filtering 29
1.5 Port Setting 30
1.5.1 Port Status 31
1.5.2 Port Alias 31
1.5.3 Rate Limit 31
1.5.4 Port Trunking 32
1.5.5 Loop Guard 33
1.6 VLAN 34
1.6.1 VLAN Setting - IEEE 802.1Q 34
1.7 Traffic Prioritization 36
1.7.1 Storm Control 37
1.7.2 QoS Policy 37
1.7.3 Port-base Priority 39
1.7.4 802.1p 39
1.7.5 TOS/DSCP 40
1.8 DHCP Server 41
1.8.1 Basic Settings 41
1.8.2 Client List 42
1.8.3 Port and IP Binding 42
1.8.4 DHCP Relay Agent 43
1.9 SNMP 44
1.9.1 Agent Setting 44
1.9.2 Trap Setting 45
1.9.3 SNMPV3 46
1.10 Security 49
1.10.1 802.1x 51
1.10.2 IP Guard 54
1.10.3 TACACS+ 56
1.11 Warning 57
1.11.1 Fault Relay 58
1.11.2 SYSLOG Setting 58
1.11.3 SMTP Setting 59
1.11.4 Event Selection 60
1.12 Monitor and Diag 61
1.12.1 System Event Log 61
1.12.2 MAC Address Table 61
1.12.3 Port Overview 63
1.12.4 Port Counters 64
1.12.5 Port Monitoring 66
1.12.6 Traffic Monitoring 67
1.12.7 SFP Monitor 68
1.12.8 Ping 68
1.13 Save Configuration 69
1.14 Factory Default 69
1.15 System Reboot 69
1.16 Logout 70

Management

The switch can be controlled via a built-in web server which supports Internet Explorer (Internet Explorer 5.0 or above versions) and other Web browsers such as Chrome. Therefore, you can manage and configure the switch easily and remotely. You can also upgrade firmware via a Web browser. The Web management function not only reduces network bandwidth consumption, but also enhances access speed and provides a user-friendly viewing screen.

Note: By default, IE5.0 or later version do not allow Java applets to open sockets. You need to modify the browser setting separately in order to enable Java applets for network ports.

Management via Web Browser

Follow the steps below to manage your switch via a Web browser

System Login

1. Launch an Internet Explorer.
2. Type http:// and the IP address of the switch. Press Enter.

3. The login screen appears.
4. Type in the username and password. The default username and password is admin.
5. Click Enter or OK button and the main interface of the management page appears.

Note: you can use the following default values:
IP Address: 192.168.10.1
Subnet Mask: 255.255.255.0
Default Gateway: 192.168.10.254
User Name: admin
Password: admin

After logging in, you will see the information of the switch as below.

System Information

System Name	IES-3164GP-LA
System Description	Industrial 20-port managed Ethernet switch with $16 \times 10 / 100$ Base-T (X) and $4 \times 100 / 1000$ Base-X SFP
System Location	
System Contact	
SNMP OID	1.3 .6 .1 .4 .1 .25972 .100 .0 .0 .423
Firmware Version	v1.00
Kernel Version	v3.103
MAC Address	$00-1 \mathrm{E}-94-\mathrm{AA}-01-12$
System Uptime	0 Day(s) 0 Hour(s) $20 \mathrm{Min}(\mathrm{s}) 34 \mathrm{Sec}(\mathrm{s})$
Help	
WARNING: Please change default password for cybersecurity!	

On the left hand side of the management interface shows links to various settings. Clicking on the links will bring you to individual configuration pages.

1.1 Basic Settings

The Basic Settings page allows you to configure the basic functions of the switch.

1.1.1 System Information

This page shows the general information of the switch.

System Setting

System Name	IES-3164GP-LA
System Description	Industrial 20-port managed Ethernet switch with $16 \times 10 / 100$ Base-T (X) and $4 \times 100 / 1$
System Location	
System Contact	

Apply Help

Label	Description
System Name	An administratively assigned name for the managed node. By convention, this is the node's fully-qualified domain name. A domain name is a text string consisting of alphabets (A-Z, a-z), digits (0-9), and minus sign (-). Space is not allowed to be part of the name. The first character must be an alpha character. And the first or last character must not be a minus sign. The allowed string length is 0 to 255.
System Description	Description of the device
System Location	The physical location of the node (e.g., telephone closet, 3rd floor). The allowed string length is 0 to 255, and only ASCII characters from 32 to 126 are allowed.

System Contact	The textual identification of the contact person for this managed node, together with information on how to contact this person. The allowed string length is 0 to 255, and only ASCII characters from 32 to 126 are allowed.
Save	Click to save changes.
Reset	Click to undo any changes made locally and revert to previously saved values.

1.1.2 Admin \& Password

This page allows you to configure the system password required to access the web pages or log in from CLI.

System Password

Username	admin
Old Password	
New Password	
Confirm New Password	

Save

Label	Description
Old Password	The existing password. If this is incorrect, you cannot set the new password.
New Password	The new system password. The allowed string length is 0 to 31, and only ASCII characters from 32 to 126 are allowed.
Confirm Password	Re-type the new password.
Save	Click to save changes.

1.1.3 IP Settings

This page allows you to configure IP information for the switch. You can specify configure the settings manually by disabling DHCP Client. After inputting the values, click Renew and the new values will be applied, which will be displayed under Current.

IP Setting
DHCP Client : Disable v

IP Address	192.168 .10 .1
Subnet Mask	255.255 .255 .0
Gateway	192.168 .10 .254
DNS1	0.0 .0 .0
DNS2	0.0 .0 .0

Apply Help

Label	Description
DHCP Client	Enable the DHCP client by checking this box. If DHCP fails or the configured IP address is zero, DHCP will retry. If DHCP retry fails, DHCP will stop trying and the configured IP settings will be used.
IP Address	Assigns the IP address of the network in use. If DHCP client function is enabled, you do not need to assign the IP address. The network DHCP server will assign an IP address to the switch and it will be displayed in this column. The default IP is 192.168.10.1.
Subnet Mask	Assigns the subnet mask of the IP address. If DHCP client function is enabled, you do not need to assign the subnet mask.
Gateway	Assigns the network gateway for the switch. The default gateway is 192.168.10.254.
DNS 1 / DNS 2	Enter the IP address of the DNS server in dotted decimal notation.
Save	Click to save changes
Reset	Click to undo any changes made locally and revert to previously saved values

1.1.4 IPv6 Settings

IPv6 is the next-generation IP that uses a 128-bit address standard. It is developed to supplement, and eventually replace the IPv4 protocol. You can configure IPv6 information of the switch on the following page.

IPv6 Setting

Auto Configuration : Disable \checkmark

Apply

Label	Description
Auto Configuration	Check to enable IPv6 auto-configuration. If the system cannot obtain the stateless address in time, the configured IPv6 settings will be used. The router may delay responding to a router solicitation for a few seconds; therefore, the total time needed to complete auto-configuration may be much longer.
Address	Specify an IPv6 address for the switch. IPv6 address consists of 128 bits represented as eight groups of four hexadecimal digits with a colon separating each field $\quad(:) . ~ F o r ~ e x a m p l e, ~ i n ~$
	'fe80::215:c5ff:fe03:4dc7', the symbol '::' is a special syntax that can be used as a shorthand way of representing multiple 16-bit groups of contiguous zeros; but it can appear only once. It can also represent a legally valid IPv4 address. For example, '::192.1.2.34'.

1.1.5 Time Setting

This page allows you to configure SNTP and system clock.

System Clock

The system clock synchronizes the tasks in a computer, like loading data before manipulating

Time Setting

System Clock

System Clock	1970/1/1 上午12:52:16
System Date (YYYY/MM/DD)	2024 Jul v 1 v
System Time (hh:mm:ss)	$11: 42$: 35

Apply Set Clock From PC Help

Label	Description
System clock	Shows the current system time. The time stamp could be assigned manually configuration or automatically by a SNTP server.
System Date	Specifies the year, month and day of the system clock (YYYY/MM/DD). Year: 2006-2015. Month: Jan-Dec. Day:1-31(28)
System Time	Specify the hour, minute and second of the system clock (hh:mm:ss). Hour:0-24, Minute:0-59, Second:0-59

NTP

NTP (Network Time Protocol) is a protocol able to synchronize the time on your system to the clock on the Internet. It will synchronize your computer system time with a server that has already been synchronized by a source such as a radio, satellite receiver or modem.
NTP Mode : Disable

UTC Timezone	$($ GMT $)$ Greenwich Mean Time: Dublin, Edinburgh, Lisbon, London
Server IP Address $\mathbf{1}$	0.0 .0 .0
Server IP Address 2	0.0 .0 .0
Server IP Address 3	0.0 .0 .0
Server IP Address $\mathbf{4}$	0.0 .0 .0
Server IP Address 5	0.0 .0 .0

Daylight Saving Time : Disable v

Daylight Saving Period	2024	Jul \vee	1 V	$03 \checkmark$	\sim
	2024	Jul \vee	1 V	$03 \sim$	
Daylight Saving Offset	0				(hours)

Apply Help

Label	Description
NTP Client	Enables or disables NTP function to retrieve the time from a NTP Server / Client.
UTC Time zone	Selects the time zone for the switch according to its location
NTP Sever Address	Enters the NTP server IP address which you would like to use for time synchronization.
Daylight Saving Time	Enables or disables daylight saving time function. When it is enabled, you need to configure the daylight saving time period.
Daylight Saving Period	Configures the beginning and ending time for the daylight saving option. The values will vary each year.
Daylight Saving Offset	Configures the offset time.
Apply	Click to apply the changes

The following table lists different location time zones for your reference.

Local Time Zone	Conversion from UTC	Time at 12:00 UTC
November Time Zone	-1 hour	11 am
Oscar Time Zone	-2 hours	10 am
ADT - Atlantic Daylight	-3 hours	9 am
AST - Atlantic Standard EDT - Eastern Daylight	-4 hours	8 am
EST - Eastern Standard CDT - Central Daylight	-5 hours	7 am
CST - Central Standard MDT - Mountain Daylight	-6 hours	6 am
MST - Mountain Standard PDT - Pacific Daylight	-8 hours	4 am
PST - Pacific Standard ADT - Alaskan Daylight		5

ALA - Alaskan Standard	-9 hours	3 am
HAW - Hawaiian Standard	-10 hours	2 am
Nome, Alaska	-11 hours	1 am
CET - Central European FWT - French Winter MET - Middle European MEWT - Middle European Winter SWT - Swedish Winter	+1 hour	
EET - Eastern European, USSR Zone 1	+2 hours	1 pm
BT - Baghdad, USSR Zone 2	+3 hours	2 pm
ZP4 - USSR Zone 3	+4 hours	3 pm
ZP5 - USSR Zone 4	+5 hours	5 pm
ZP6 - USSR Zone 5	+6 hours	6 pm
WAST - West Australian Standard	+7 hours	7 pm
CCT - China Coast, USSR Zone 7	+8 hours	8 pm
JST - Japan Standard, USSR Zone 8	+9 hours	9 pm
EAST - East Australian Standard GST Guam Standard, USSR Zone 9	+10 hours	10 pm
IDLE - International Date Line NZST - New Zealand Standard NZT - New Zealand	+12 hours	Midnight

PTP Client

The Precision Time Protocol (PTP) is a time-transfer protocol defined in the IEEE 1588-2002 standard that allows precise synchronization of networks (e.g., Ethernet). Accuracy within the nanosecond range can be achieved with this protocol when using hardware generated timestamps.

PTP Client : Disable \vee

Apply Help

Label	Description
PTP Client	Enables or disables PTP Client

1.1.6 LLDP

LLDP Configurations

LLDP (Link Layer Discovery Protocol) provides a method for networked devices to receive and/or transmit their information to other connected devices on the network that are also using the protocols, and to store the information that is learned about other devices. This page allows you to examine and configure current LLDP port settings.

LLDP

Mode : Enable マ

Apply Help

Neighbor Info Table

Port	System Name	MAC Address	IP Address
P15		$00-90-$ E8-AF-4C-1C	$\underline{0.0 .0 .0}$

Label	Description
Mode	Enable / Disable LLDP Function
Tx Interval	LLDP Packet reflash interval
Sync Time	Sync Time info in LLDP,

1.1.7 Modbus TCP

Modbus TCP uses TCP/IP and Ethernet to carry the data of the Modbus message structure between compatible devices. The protocol is commonly used in SCADA systems for communications between a human-machine interface (HMI) and programmable logic controllers. This page enables you to enable and disable Modbus TCP support of the switch.

Modbus TCP
Mode : Disable \checkmark

Apply Help

Label	Description
Mode	Shows the existing status of the Modbus TCP function

1．1．8 Backup／Restore Configurations

You can save current values from the switch to a TFTP server，and restore the switch to the settings by going to the TFTP restore configuration page．

The following page allows you to save the existing configurations as a backup file to a TFTP server．

Backup Configuration
To TFTP Server

TFTP Server IP Address 192.168 .10 .66
 Backup File Name
 data．bin

Backup Help

To Local PC

Backup Help

The following page allows you to restore the system to previous configurations from a TFTP server．

Backup \＆Restore

Restore Configuration
From TFTP Server

TFTP Server IP Address	192．168．10．66
Restore File Name	data．bin

Restore Help

From Local PC
選擇檔案 未選擇任可檔亲
Restore Help

1．1．9 Firmware Update

This page allows you to update the firmware of the switch．Before updating，make sure you have your TFTP server ready and the firmware file is on the TFTP server．Enter the IP address of the TFTP server you want to connect to and the firmware file name，and then click upgrade to start upgrading．You can also choose the firmware file form your PC．

Upgrade Firmware

From TFTP Server

TFTP Server IP	192.168 .10 .66
Firmware File Name	image．bin

Upgrade Help

From Local PC
䢱擇檔案 未選擇任可檔案

```
Upgrade Help
```


1．1．10 Upgrade HTTPS Certificate

Upgrade HTTPS Certification allows user to update the switch HTTPS Certification file． Before updating，make sure you have your TFTP server ready and the Certification key file is on the TFTP server．

Upgrade HTTPS Certification

TFTP Server IP	192.168 .10 .66
Private Key File Name	private．key
Pass Phrase for Private Key	
Certification File Name	public．crt

Upgrade

1.2 Redundancy

1.2.1 MRP

MRP (Media Redundancy Protocol) is an industry standard for high-availability Ethernet networks. MRP allowing Ethernet switches in ring configuration to recover from failure rapidly to ensure seamless data transmission. A MRP ring (IEC 62439) can support up to 50 devices and will enable a back-up link in 80 ms (adjustable to max. $200 \mathrm{~ms} / 500 \mathrm{~ms}$).

Configurations

MRP

\checkmark Enable		
\square Manager \square React on Link Change		
1st Ring Port	G1 v	Linkdown
2nd Ring Port	G2 \vee	Forwarding
\square Force Speed/Duplex for 100BASE-TX		

Apply

Label	Description
Enable	Enables the MRP function
Manager	Every MRP topology needs a MRP manager. One MRP topology can only have a Manager. If two or more switches are set to be Manager, the MRP topology will fail.
React on Link Change (Advanced mode)	Faster mode. Enabling this function will cause MRP topology to converge more rapidly. This function only can be set in MRP manager switch.
$\mathbf{1 s}^{\text {st } \text { Ring Port }}$	Chooses the port which connects to the MRP ring
$\mathbf{2}^{\text {nd }}$ Ring Port	Chooses the port which connects to the MRP ring
Force Speed / Duplex for 100BASE-TX	By default, this is in auto-negotiation mode. Enabling this function will automatically change the default to Full mode.(this function is used in combination with Hirschmann's switch as the MRP ring port speed/duplex of Hirschmann's switches are always in Full mode)

1.2.2 O-Ring

O-Ring is ORing's proprietary redundant ring technology, with recovery time of less than 30 milliseconds (in full-duplex Gigabit operation) or 10 milliseconds (in full-duplex Fast Ethernet operation) and up to 250 nodes. The ring protocols identify one switch as the master of the network, and then automatically block packets from traveling through any of the network's redundant loops. In the event that one branch of the ring gets disconnected from the rest of the network, the protocol automatically readjusts the ring so that the part of the network that was disconnected can reestablish contact with the rest of the network. The O-Ring redundant ring technology can protect mission-critical applications from network interruptions or temporary malfunction with its fast recover technology.

Configurations

O-Ring supports three ring topologies: Ring Master, Coupling Ring, and Dual Homing. You can configure the settings in the interface below.

O-Ring

| V Enable Ring | | | |
| :--- | :--- | :--- | :--- | :--- |
| | Enable Ring Master | | |
| | 1st Ring Port | Port.01 \vee | LINKDOWN |
| | 2nd Ring Port | Port.02 \vee | LINKDOWN |
| \square | Enable Couple Ring | | |
| | Couple Port | Port.03 \vee | LINKDOWN |
| \square | Enable Dual Homing | | |
| | Homing Port | Port.05 \vee | LINKDOWN |

Apply Help

Label	Description
Enable Ring	Check to enable O-Ring topology.
Enable Ring Master	Only one ring master is allowed in a ring. However, if more than one switches are set to enable Ring Master, the switch with the lowest MAC address will be the active ring master and the others will be backup masters.
1st Ring Port	The primary port when the switch is ring master
2nd Ring Port	The backup port when the switch is ring master
Enable Coupling RingCheck to enable Coupling Ring. Coupling Ring can divide a big ring into two smaller rings to avoid network topology changes affecting all switches. It is a good method for connecting two rings.	
Couple Port	Ports for connecting multiple rings. A coupling ring needs four switches to build an active and a backup link. Links formed by the coupling ports will run in active/backup mode.
Enable Dual Homing	Check to enable Dual Homing. When Dual Homing is enabled, the ring will be connected to normal switches through two RSTP links (ex: backbone Switch). The two links work in active/backup mode, and connect each ring to the normal switches in RSTP mode.
Apply	Click to activate the configurations.

Note: due to heavy loading, setting one switch as ring master and coupling ring at the same time is not recommended.

1.2.3 O-Chain

O-Chain is ORing's revolutionary network redundancy technology which enhances network redundancy for any backbone networks, providing ease-of-use and maximum fault-recovery swiftness, flexibility, compatibility, and cost-effectiveness in a set of network redundancy topologies. The self-healing Ethernet technology designed for distributed and complex industrial networks enables the network to recover in less than 30 milliseconds (in full-duplex Gigabit operation) or 10 milliseconds (in full-duplex Fast Ethernet operation) for up to 250 switches if at any time a segment of the chain fails.
O-Chain allows multiple redundant rings of different redundancy protocols to join and function together as a large and the most robust network topologies. It can create multiple redundant networks beyond the limitations of current redundant ring technologies.

Configurations

O-Chain is very easy to configure and manage. Only one edge port of the edge switch needs to be defined. Other switches beside them just need to have O-Chain enabled.

O-Chain

Enable Uplink Port					Edge Port	State
1st	Port.01 \vee	\square	Linkdown			
2nd	Port.02 \vee	\square	Forwarding			

Apply

Label	Description
Enable	Check to enable O-Chain function
$\mathbf{1}^{\text {st }}$ Ring Port	The first port connecting to the ring
$\mathbf{2}^{\text {nd }}$ Ring Port	The second port connecting to the ring
Edge Port	An O-Chain topology must begin with edge ports. The ports with a smaller switch MAC address will serve as the backup link and RM LED will light up.

1.2.4 RSTP Repeater

A repeater can pass a BPDU packet directly from one RSTP device to another as if the two devices are connected.

RSTP-Repeater

Enable		
	Uplink Port	RSTP Edge Port
1st	Port.01	\square
2nd	Port.02	\square

Apply Help

Label	Description
Enable	Check to enable RSTP Repeater
$\mathbf{1}^{\text {st }}$ Ring Port	The first port connecting to the RSTP network
$\mathbf{2}^{\text {nd }}$ Ring Port	The second port connecting to the RSTP network
Edge Port	Only the edge device (connected to RSTP device) needs to specify edge port. The user must specify the edge port according to topology of network.

1.2.5 Fast Recovery

Fast recovery mode can be set to connect multiple ports to one or more switches, thereby providing redundant links. Fast recovery mode supports 5 priorities. Only the first priority will be the active port, and the other ports with different priorities will be backup ports.

Fast Recovery Mode

Apply

Label	Description
Active	Activate fast recovery mode
Port. $\mathbf{0 1} \mathbf{- 0 5}$	Ports can be set to 5 priorities. Only the port with the highest priority will be the active port. 1st Priority is the highest.
Apply	Click to activate the configurations.

1.2.6 RSTP

RSTP - Setting

RSTP Mode : Disable v
Bridge Setting

Priority (0-61440)	32768
Max Age Time (6-40)	20
Hello Time (1-10)	2
Forward Delay Time (4-30)	15

Label	Description
RSTP mode	You must enable or disable RSTP function before configuring the related parameters.
Priority (0-61440)	A value used to identify the root bridge. The bridge with the lowest value has the highest priority and is selected as the root. If the value changes, you must reboot the switch. The value must be a multiple of 4096 according to the protocol standard rule
Max Age Time(6-40)	The number of seconds a bridge waits without receiving Spanning-tree Protocol configuration messages before attempting a reconfiguration. The valid value is between 6 through 40.
Hello Time (1-10)	The time interval a switch sends out the BPDU packet to check RSTP current status. The time is measured in seconds and the valid value is between 1 through 10.
Forwarding Delay	The time of a port waits before changing from RSTP learning and listening states to forwarding state. The valid value is between 4 through 30.
Time (4-30)	Click to apply the configurations.
Apply	

NOTE: the calculation of the MAX Age, Hello Time, and Forward Delay Time is as follows:
$2 \times$ (Forward Delay Time value -1) > = Max Age value $>=2 \times$ (Hello Time value +1)
The following pages show the information of the root bridge, including its port status.

Info

Root Bridge Information

Bridge ID	8000001 E94011E7A
Root Priority	32768
Root Port	ROOT
Root Path Cost	0
Max Age	20
Hello Time	2
Forward Delay	15

Port Setting

Port No.	Enable	Path Cost (0:auto, 1-200000000)	Priority $(\mathbf{0 - 2 4 0})$	P2P	Edge
P1	enable \vee	0	128	auto \vee	true \vee
P2	enable \vee	0	128	auto \vee	true \vee
P3	enable \vee	0	128	auto \vee	true \vee
P4	enable \vee	0	128	auto \vee	true \vee
P5	enable \vee	0	128	auto \vee	true \vee
P6	enable \vee	0	128	auto \vee	true \vee
P7	enable \vee	0	128	auto \vee	true \vee

Port Status

Port	Path Cost	Port Priority	Oper P2P	Oper Edge	Stp Neighbor	State	Role
Port.01	200000	128	True	True	False	Disabled	Disabled
Port.02	200000	128	True	True	False	Disabled	Disabled
Port.03	200000	128	True	True	False	Disabled	Disabled
Port.04	200000	128	True	True	False	Disabled	Disabled
Port.05	200000	128	True	True	False	Disabled	Disabled

Label	Description
Path	Cost
$\left(\begin{array}{l}\text { (1-200000000 })\end{array}\right.$	The path cost incurred by the port. The path cost is used when establishing an active topology for the network. Lower path cost

	ports are chosen as forwarding ports in favor of higher path cost ports. The range of valid values is 1 to 200000000.
Port Priority (0-240)	Decide which port should be blocked by priority in the LAN. The valid value is between 0 and 240, and must be a multiple of 16
Oper P2P	Configures the port connects to a point-to-point LAN rather than a shared medium. This can be configured automatically or set to true or false manually. True means P2P enabling. False means P2P disabling. Transiting to forwarding state is faster for point-to-point LANs than for shared media.
Oper Edge	A flag indicating whether the port is connected directly to edge devices or not (no bridges attached). Transiting to the forwarding
state is faster for edge ports (operEdge set to true) than other	
ports.	

means not included in mathematical calculations, and False

means contained in mathematical calculations according to STP.\end{array}\right|\)

1.2.7 MSTP

Since the recovery time of STP and RSTP takes seconds, which is unacceptable in industrial applications, MSTP was developed. The technology supports multiple spanning trees within a network by grouping and mapping multiple VLANs into different spanning-tree instances, known as MSTIs, to form individual MST regions. Each switch is assigned to an MST region. Hence, each MST region consists of one or more MSTP switches with the same VLANs, at least one MST instance, and the same MST region name. Therefore, switches can use different paths in the network to effectively balance loads.

Bridge Settings

This page allows you to examine and change the configurations of current MSTI ports. A MSTI port is a virtual port, which is instantiated separately for each active CIST (physical) port for each MSTI instance configured and applicable for the port. The MSTI instance must be selected before MSTI port configuration options are displayed.

MSTP - Bridge Setting

MSTP Enable	Enable \vee
Force Version	MSTP \vee
Configuration Name	MSTP_SWITCH
Revision Level (0-65535)	0
Priority (0-61440)	32768
Max Age Time (6-40)	20
Hello Time (1-10)	2
Forward Delay Time (4-30)	15
Max Hops (1-40)	20

Priority must be a multiple of 4096.
2* (Forward Delay Time-1) should be greater than or equal to the Max Age. The Max Age should be greater than or equal to $\mathbf{2}^{*}$ (Hello Time +1).

Label	Description
MSTP Enable	Enables or disables MSTP function.
Force Version	Forces a VLAN bridge that supports RSTP to operate in an STP-compatible manner.
Configuration Name	The name which identifies the VLAN to MSTI mapping. Bridges

	must share the name and revision (see below), as well as the VLAN-to-MSTI mapping configurations in order to share spanning trees for MSTIs (intra-region). The name should not exceed 32 characters.
Revision Level $\mathbf{(0 - 6 5 5 3 5)}$	Revision of the MSTI configuration named above. This must be an integer between 0 and 65535.
Priority (0-61440)	A value used to identify the root bridge. The bridge with the lowest value has the highest priority and is selected as the root. If the value changes, you must reboot the switch. The value must be a multiple of 4096 according to the protocol standard rule.
Max Age Time(6-40)	The number of seconds a bridge waits without receiving Spanning-tree Protocol configuration messages before attempting a reconfiguration. The valid value is between 6 through 40.
Hello Time (1-10)	The time interval a switch sends out the BPDU packet to check RSTP current status. The time is measured in seconds and the valid value is between 1 through 10.
Forwarding Time (4-30)	The time of a port waits before changing from RSTP learning and listening states to forwarding state. The valid value is between 4 through 30.
Max Hops (1-40)	An additional parameter for those specified for RSTP. A single value applies to all STP within an MST region (the CIST and all MSTIs) for which the bridge is the regional root.
Apply	Click to apply the configurations.

Bridge Port

MSTP - Bridge Port

priority must be a multiple of 16
Apply

Label	Description

Port No.	The number of port you want to configure
Priority (0-240)	Decide which port should be blocked by priority in the LAN. The valid value is between 0 and 240, and must be a multiple of 16.
Path $\mathbf{(1 - 2 0 0 0 0 0 0 0 0)}$	Cost
Admin P2P	The path cost incurred by the port. The path cost is used when establishing an active topology for the network. Lower path cost ports are chosen as forwarding ports in favor of higher path cost ports. The range of valid values is 1 to 200000000.
Admin Edge	Configures whether the port connects to a point-to-point LAN rather than a shared medium. This can be configured automatically or set to true or false manually. True means P2P enabling. False means P2P disabling. Transiting to forwarding state is faster for point-to-point LANs than for shared media.
Admin Non STP	Specify whether this port is an edge port or a nonedge port. An edge port is not connected to any other bridge. Only edge ports and point-to-point links can rapidly transition to forwarding state. To configure the port as an edge port, set the port to True.
Apply	The port includes the STP mathematic calculation. True is not including STP mathematic calculation, false is including the STP mathematic calculation.
	Click to apply the configurations.

Instance Setting

This page allows you to change the configurations of current MSTI bridge instance.
MSTP - Instance Setting

Instance	State	VLANs	Priority $(0-61440)$
$1 \vee$	Enable \vee	$1-4094$	

Priority must be a multiple of 4096.
Apply

Label	Description
Instance	Set the instance from 1 to 15
State	Enables or disables the instance
VLANs	The VLAN which is mapped to the MSTI. A VLAN can only be mapped to one MSTI. An unused MSTI will be left empty (ex. without any mapped VLANs).

Priority (0-61440)	A value used to identify the root bridge. The bridge with the lowest value has the highest priority and is selected as the root. If the value changes, you must reboot the switch. The value must be a multiple of 4096 according to the protocol standard
Apply	Click to apply the configurations.

Port Priority

This page allows you to change the configurations of current MSTI bridge instance priority.

MSTP - Instance Port

Priority must be a multiple of $\mathbf{1 6}$
Apply

Label	Description
Instance	The bridge instance. CIST is the default instance, which is always active.
Port	The port number which you want to configure.
Priority (0-240)	Decides the priority of ports to be blocked in the LAN. The valid value is between 0 and 240, and must be a multiple of 16
Path $\mathbf{(1 - 2 0 0 0 0 0 0 0 0)}$	The path cost incurred by the port. The path cost is used when establishing an active topology for the network. Lower path cost ports are chosen as forwarding ports in favor of higher path cost ports. The range of valid values is 1 to 200000000.
Apply	Click to apply the configurations.

1.3 Fast Recovery

Fast recovery mode can be set to connect multiple ports to one or more switches, thereby providing redundant links. Fast recovery mode supports 5 priorities. Only the first priority will be the active port, and the other ports with different priorities will be backup ports.

Fast Recovery Mode

\checkmark Active	
Port.01	Not included \vee
Port.02	Not included \vee
Port.03	Not included \vee
Port.04	Not included \vee
Port.05	Not included \vee

Apply

Label	Description
Active	Activate fast recovery mode
Port.01 - 05	Ports can be set to 5 priorities. Only the port with the highest priority will be the active port. 1st Priority is the highest.
Apply	Click to activate the configurations.

1.4 Multicast

1.4.1 IGMP Snooping

IGMP (Internet Group Management Protocol) snooping monitors the IGMP traffic between hosts and multicast routers. The switch uses what IGMP snooping learns to forward multicast traffic only to interfaces that are connected to interested receivers. This conserves bandwidth by allowing the switch to send multicast traffic to only those interfaces that are connected to hosts that want to receive the traffic, instead of flooding the traffic to all interfaces in the VLAN. This page allows you to set up IGMP snooping configurations.

IGMP Snooping

IGMP Snooping : Disable \vee

IGMP Query Mode: Disable $~ \sim ~$
Router Ports :
P1 \square P2 \square P3 \square P4
P5 \square P6 \square P7 \square P8
P9 \square P10 \square P11 \square P12
P13 \square P14 \square P15 \square P16
G1 \square G2 \square G3 \square G4

Unregister Stream Flooding: Disable \vee

Apply Help

Label	Description
IGMP Snooping	Check to enable global IGMP snooping
IGMP Query Mode	Configures the switch to be the IGMP querier. Only one IGMP querier is allowed in an IGMP application. Auto will select the switch with the lowest IP address as the querier.
Router Port	Router port will always forwarding multicast packet .
Apply	Click to apply the configurations.
Help	Shows help file.

1.4.2 Static Multicast Filtering

Static multicast filtering provides a method for users to configure multicast group memberships manually. The function enables end devices to receive multicast traffic only if they register to join specific multicast groups. With static multicast filtering, network devices only forward multicast traffic to the ports connected to registered end devices. The function allows you to control the multicast traffic precisely.

Static Multicast Filtering

Multicast IP Address : \square
Member Ports

Add
Help

	IP Address	Member Ports
\square	230.0 .0 .6	Port.04, Port.05

Delete Help

Label	Description
Multicast IP Address	Assigns a multicast group IP address in the range of 224.0.0.0 $\sim 239.255 .255 .255$
Member Ports	Check the box next to the port number to include them as member ports in the specific multicast group.
Add	Click to add the ports to the IP multicast list
Delete	Deletes an entry from the table
Help	Shows help file.

1.5 Port Setting

Port Setting allows you to manage individual ports of the switch, including speed/duplex, flow control, and security.

Port Control

Port Control

Port No.	State	Speed/Duplex	Flow Control	Security
Port.01	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
Port.02	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
Port.03	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
Port.04	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
Port.05	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
Port.06	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
Port.07	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
Port.08	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
G1	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee
G2	Enable \vee	AutoNegotiation \vee	Symmetric \vee	Disable \vee

Auto Detect 100/1000 SFP	Enable

Apply Help

Label	Description
Port NO.	The number of the port to be configured.
State	Enables or disables the port.
Speed/Duplex	Available values include auto-negotiation, 100-full, 100-half, $\mathbf{1 0 - f u l l , ~ o r ~ 1 0 - h a l f ~}$
Flow Control	Supports symmetric and asymmetric modes to avoid packet loss when congestion occurs
Security	Enabling port security will disable MAC address learning in this port. Thus only the frames with MAC addresses in the port security list will be forwarded, otherwise will be discarded.
Auto Detect 100/1000	Automatically detects SFP port speed (100M / 1000M)
Apply	Click to apply the configurations

1.5.1 Port Status

This page shows the status of the each port in terms of its state, speed/duplex, and flow control.

Port Status

Port No.	Type	Link	State	Speed/Duplex	Flow Control
Port.01	$100 T X$	Down	Enable	N/A	N/A
Port.02	100 TX	Down	Enable	N/A	N/A
Port.03	100 TX	Down	Enable	N/A	N/A
Port.04	$100 T X$	Down	Enable	N/A	N/A

1.5.2 Port Alias

This page provides alias IP address configuration. Some devices might have more than one IP addresses. You could specify other IP addresses here.
Port Alias

Port No.	
Port.01	
Port.02	
Port.03	
Port.04	
Port.05 Alias	

1.5.3 Rate Limit

This page allows you to define the rate limits applied to a port, including incoming and outgoing traffic.

Rate Limit

Port No.	Ingress Limit Frame Type	Ingress		Egress		
Port.01	All	\vee	0	kbps	0	kbps
Port.02	All	\vee	0	kbps	0	kbps
Port.03	All	\vee	0	kbps	0	kbps

Label	Description
Ingress Limit Frame Type	Valid values include All, Broadcast only, Broadcast/Multicast and Broadcast/Multicast/Flooded Unicast.
Ingress	The transmission rate for incoming traffic
Egress	The transmission rate for outgoing traffic
Apply	Click to activate the configurations.

1.5.4 Port Trunking

A port trunk is a group of ports that have been grouped together to function as one logical path. This method provides an economical way for you to increase the bandwidth between the switch and another networking device. In addition, it is useful when a single physical link between the devices is insufficient to handle the traffic load. This page allows you to configure the aggregation hash mode and the aggregation group.

Port Trunk - Setting

Port No.	Group ID		Type	
Port. 01	None	\checkmark	Static	
Port. 02	None	\checkmark	Static	\checkmark
Port. 03	None	\checkmark	Static	\checkmark
Port. 04	None	\checkmark	Static	\checkmark
Port. 05	None	\checkmark	Static	\checkmark
Port. 06	None	\checkmark	Static	\checkmark
Port. 07	None	\checkmark	Static	\checkmark
Port. 08	None	\checkmark	Static	\checkmark
G1	None	\checkmark	Static	\checkmark
G2	None	\checkmark	Static	\checkmark

Note: the types should be the same for all member ports in a group.

802.3ad LACP Work Ports

Apply Help

Label	Description
Group ID	Indicates the ID of each aggregation group. None means no aggregation. Only one group ID is valid per port.
Type	The switch supports two types of link aggregation; static and $802.3 a d$ LACP. Static trunks are manually configured, while. LACP-configured ports will automatically negotiate a trunk with LACP-configured ports on another device.

Work Ports	The total number of active ports in a dynamic trunk group. The default value of works ports is Max. In a dynamic trunk group, if the number of work ports is lower than the number of members of the trunk group, the exceed ports are standby/redundant ports and can be aggregated if working ports fail. If it is a static trunk group, the number of work ports must equal the total number of group member ports.
Apply	Click to activate the configurations.

Port Trunk - Status

Group ID	Trunk Member	Type
Trunk 1	N/A	Static
Trunk 2	N/A	Static
Trunk 3	N/A	Static
Trunk 4	N/A	Static
Trunk 5	N/A	Static

Label	Description
Group ID	Indicates the ID of each aggregation group. None means no aggregation. Only one group ID is valid per port.
Trunk Member	Lists members of a specific trunk group.
Type	Indicates the type of the port trunk

1.5.5 Loop Guard

This feature prevents loop attack. When receiving loop packets, the port will be disabled automatically, preventing the loop attack from affecting other network devices.

Loop Guard

Port No.	Active	Port State
Port.01	\square	Enable
Port.02	\square	Enable
Port.03	\square	Enable

Label	Description
Active	Check to enable Loop Guard
Port Status	Indicates the enabled/disabled status of the port.

1.6 VLAN

1.6.1 VLAN Setting - IEEE 802.1Q

A VLAN (Virtual LAN) is a logical LAN based on a physical LAN with links that does not consist of a physical (wired or wireless) connection between two computing devices but is implemented using methods of network virtualization. A VLAN can be created by partitioning a physical LAN into multiple logical LANs using a VLAN ID. You can assign switch ports to a VLAN and add new VLANs in this page.

VLAN Setting

VLAN Operation Mode : $802.1 \mathrm{Q} \quad \mathrm{V}$
GVRP Mode : Disable \downarrow
Management VLAN ID : 0 Apply
Port VLAN Setting

Port No.	Link Type	PVID	Untagged VIDs	Tagged VIDs
Port.01	Acoess \vee	1	1	
Port.02	Aocess $\quad \vee$	1	1	
Port. 03	Aocess $\quad \vee$	1	1	

$\left.\begin{array}{|l|l|}\hline \text { Label } & \text { Description } \\ \hline \begin{array}{l}\text { VLAN Operation } \\ \text { Mode }\end{array} & \text { Available options include Disable, Port Base, and 802.1Q } \\ \hline & \begin{array}{l}\text { GVRP is a GARP application that provides IEEE } \\ 802.1 Q-c o m p l i a n t ~ V L A N ~ p r u n i n g ~ a n d ~ d y n a m i c ~ V L A N ~ c r e a t i o n ~ o n ~\end{array} \\ 802.1 Q \text { trunk ports. With GVRP, the switch can exchange VLAN } \\ \text { configuration information with other GVRP switches, prune } \\ \text { unnecessary broadcast and unknown unicast traffic, and } \\ \text { dynamically create and manage VLANs on switches connected }\end{array}\right\}$

	workstations, must be VLAN-aware. All frames on a trunk linke must have a special header attached. Hybrid Link: The combination of Access Link and Trunk Link. This is a link where both VLAN-aware and VLAN-unaware devices are attached. It can have both tagged and untagged frames, but all the frames for a specific VLAN must be either tagged or untagged. Hybrid(QinQ) Link: Allows one more VLAN tag in an original VLAN frame.
Untagged VID	Set the port default VLAN ID for untagged devices that connect to the port. The range is 1 to 4094.
Tagged VIDs	Set the tagged VIDs to carry different VLAN frames to other switch.
Apply	Click to set the configurations.

VLAN Setting

VLAN Operation Mode : PortBased \vee
Port Based VLAN List

Label	Description
VLAN Mode	Available options include Disable, Port Base, and 802.1Q
Add	Click to start adding a VLAN
Edit	Edits existing VLANs
Delete	Deletes existing VLANs
Help	Shows help file.

VLAN Setting
VLAN Operation Mode : Port Based \vee

VLAN ID: 1

Apply Help

Label	Description
VLAN Mode	Averation
Group Name	The name of the VLAN that you want to change settings.
VLAN ID	The number of the VLAN to the VLAN group
Add	Remove ports from the VLAN group
Remove	Click to apply the configurations
Apply	Shows help file.
Help	

1.7 Traffic Prioritization

With traffic prioritization schemes, the switch can transmit data based on its importance, thereby ensuring mission-critical applications, such as VoIP and video teleconferencing, have sufficient bandwidth for transmission when the network is congested.
QoS (Quality of Service) is a method to achieve efficient bandwidth utilization between devices by prioritizing frames according to individual requirements and transmit the frames based on their importance. Frames in higher priority queues receive a bigger slice of bandwidth than those in a lower priority queue.

1．7．1 Storm Control

A LAN storm occurs when packets flood the LAN，creating excessive traffic and degrading network performance．Errors in the protocol－stack implementation，mistakes in network configuration，or users issuing a denial－of－service attack can cause a storm．Storm control prevents traffic on a LAN from being disrupted by a broadcast，multicast，or unicast storm on a port．In this page，you can specify the rate at which packets are received for unicast， multicast，and broadcast traffic．The unit of the rate can be either pps（packets per second）or bps

Storm Control

Rate Unit ： $\mathrm{pps} \sim$

Port No．	Packet Type	Rate
P1	Multicast マ	0
P2	Broadcast \checkmark	0
P3	Unicast マ	0
P4	Multicast マ	0
P5	Multicast マ	0

Label	Description
Rate Unit	Select Rate Unit ，（pps or bps）
Packet type	Select packet type（ Unicast／multicast／broadcast）
Rate	Define ratee value

1．7．2 QoS Policy

Policing is a traffic regulation mechanism for limiting the rate of traffic streams，thereby controlling the maximum rate of traffic sent or received on an interface．When the traffic rate exceeds the configured maximum rate，policing drops or remarks the excess traffic．This page allows you to configure QoS policies for the switch．

QoS Policy

QoS Mode : Disable v

QoS Policy :

Strict Priority
Weighted Round Robin
Oeighted Fair Queuing

Apply Help

Label	Description		
QOS Mode	Available modes include: Disable: disables the mode Port-base: the output priority is determined by ingress port. 802.1p only: the output priority is determined by $802.1 p$ only. DSCP only: the output priority is determined by DSCP only. $802.1 p$ first: the output priority is determined by $802.1 p$ and DSCP, but 802.1p first. DSCP first: the output priority is determined by $802.1 p$ and DSCP, but DSCP first.		
QOS policy	weight fair queue scheme: the output queues will use an $8: 4: 2: 1$ ratio to transmit packets from the highest to lowest queue. For example: 8 high queue packets, 4 middle queue packets, 2 low queue packets, and the one lowest queue packets are transmitted		
in one turn.			
Use the strict priority scheme: when traffic arrives at the device,			
traffic on the highest priority queue will be transmitted first,			
followed by traffic on lower priorities. If there is always some			
content in the highest priority queue, then the other packets in the			
rest of queues will not be sent until the highest priority queue is			
empty.		\quad	Click to apply the configurations
:---			
Apply			
Shows help file.			

1.7.3 Port-base Priority

Port-based Priority

Port No.	Priority
Port.01	Lowest \vee
Port.02	Lowest \vee
Port.03	Lowest \vee
Port.04	Lowest \vee
Port.05	Lowest \vee
Port.06	Lowest \vee
Port.07	Lowest \vee
Port.08	Lowest \vee
G1	Lowest \vee
G2	Lowest \vee

Apply Help

Label	Description
Priority	Assigns a port to a priority queue. Four priority queues are available: High, Middle, Low, and Lowest.
Apply	Click to apply the configurations
Help	Shows help file.

1.7.4 802.1p

COS (Class of Service), also known as 802.1 p, is a parameter for differentiating the types of payloads contained in the packet to be transmitted. CoS operates only on 802.1Q VLAN Ethernet at Layer 2, while other QoS mechanisms operate at the Layer 3or use a local QoS tagging system that does not modify the actual packet. COS supports up to 7 priorities and 4 priority queues: High, Middle, Low, and Lowest. When an ingress packet has no VLAN tag, the default priority value will be used.

Label	Description
Priority	Assigns a port to a priority queue. Four priority queues are available: High, Middle, Low, and Lowest.
Apply	Click to apply the configurations
Help	Shows help file.

1.7.5 TOS/DSCP

TOS (Type of Service) is a field in the IP header of a packet. It is used by Differentiated Services and is called the DSCP (Differentiated Services Code Point). The output priority of a packet can be determined by this field and the supported priority value ranges from 0 to 63 . DSCP supports four priority queues: High, Middle, Low, and Lowest.

TOS/DSCP

DSCP	0	1	2	3	4	5	6	7
Priority	Lowest v	Lowest \vee	Lowest \vee	Lowest \vee	Lowest \downarrow	Lowest \vee	Lowest \vee	Lowest \checkmark
DSCP	8	9	10	11	12	13	14	15
Priority	Lowest v	Lowest \vee	Lowest \vee	Lowest \vee	Lowest \downarrow	Lowest \vee	Lowest \vee	Lowest v
DSCP	16	17	18	19	20	21	22	23
Priority	Low	Low \vee	Low \vee	Low v	Low V	Low v	Low v	Low
DSCP	24	25	26	27	28	29	30	31
Priority	Low v	Low						
DSCP	32	33	34	35	36	37	38	39
Priority	Middle \vee							
DSCP	40	41	42	43	44	45	46	47
Priority	Middle \vee	Middle \vee	Middle \checkmark	Middle \vee				
DSCP	48	49	50	51	52	53	54	55
Priority	High v	High V	High \vee	High \vee	High v	High v	High v	High v
DSCP	56	57	58	59	60	61	62	63
Priority	High \vee	High \vee	High \vee	High \vee	High v	High \vee	High \vee	High v

Apply Help

Label	Description
Priority	Assigns a port to a priority queue. Four priority queues are available: High, Middle, Low, and Lowest.
Apply	Click to apply the configurations
Help	Shows help file.

1.8 DHCP Server

The switch provides DHCP server functions. By enabling DHCP, the switch will become a DHCP server and dynamically assigns IP addresses and related IP information to network clients.

1.8.1 Basic Settings

This page allows you to set up DHCP settings for the switch. You can check the Enabled checkbox to activate the function. Once the box is checked, you will be able to input information in each column.

DHCP Server - Basic Setting

DHCP Server: Disable \vee

Start IP Address	192.168 .10 .2
End IP Address	192.168 .10 .200
Subnet Mask	255.255 .255 .0
Gateway	192.168 .10 .254
DNS	0.0 .0 .0
Lease Time (Hour)	168

1.8.2 Client List

You can assign a specific IP address within the dynamic IP range to a specific port. When a device is connected to the port and requests for dynamic IP assigning, the switch will assign the IP address that has previously been assigned to the connected device.

DHCP Server - Client List

IP Address \quad MAC Address Type Status Lease

Help

1.8.3 Port and IP Binding

You can assign a specific IP address within the dynamic IP range to a specific port. When a device is connected to the port and requests for dynamic IP assigning, the switch will assign the IP address that has previously been assigned to the connected device.

DHCP Server - Port and IP Binding

Port	IP
Port.01	192.168 .10 .123
Port.02	0.0 .0 .0
Port.03	0.0 .0 .0
Port.04	0.0 .0 .0
Port.05	0.0 .0 .0

1.8.4 DHCP Relay Agent

DHCP relay is used to forward and transfer DHCP messages between the clients and the server when they are not in the same subnet domain. You can configure the function in this page.

DHCP Relay Agent					DHCP Option 82 Circuit-ID Table		
Mode : Enable \vee					Port No.	Circuit-ID	Option 82
DHCP Server IP Address					Port. 01	000400010001	\square
					Port. 02	000400010002	\square
1st Server IP		0.0.0.0	VID	1	Port. 03	000400010003	\square
2nd Server IP		0.000	VID	1	Port. 04	000400010004	\square
3rd Server IP		0.000	VID	1	Port. 05	000400010005	\square
4th Server IP		0.0000	VID	1	Port. 06	000400010006	\square
DHCP Option 82 Remote ID					Port. 07	000400010007	\square
					Port. 08	000400010008	\square
					G1	000400010009	\square
Value	192,168.10.1				G2	00040001000a	\square
Display	O0A80A01				Apply Help		

2

Label	Description
DHCP Relay	Enables or disables DHCP relay agent
DHCP Server IP Address and VID	Specify the IP address and VID of the DHCP server. 0.0.0.0 means the server is inactive.
DHCP Option 82 Remote ID	Provides an identifier for the remote server. Four types of IDs are supported: IP, MAC, Client-ID, and Other.
DHCP Option 82 Circuit-ID Table	Encodes an agent-local identifier of the circuit from which a DHCP client-to-server packet is received. It is intended for use by agents in relaying DHCP responses back to the proper circuit.
Apply	Click to apply the configurations

1.9 SNMP

SNMP (Simple Network Management Protocol) is a protocol for managing devices on IP networks. It is mainly used network management systems to monitor the operational status of networked devices. In an event-triggered situation, traps and notifications will be sent to administrators.

1.9.1 Agent Setting

An SNMP agent will receive and process requests, send responses to the manager, and send traps when an event occurs. The following page allows you to configure the SNMP agent for the switch.

SNMP - Agent Setting
SNMP Agent Version SMMPV1N2c \vee
Apply

SNMP V1/V2c Community

Community String	Privilege
public	
Read Only $\quad \vee$	
private	
	Read and Write \vee
	Read Only $\quad \vee$
	Read Only $\quad \vee$

Apply

Label	Description
SNMP Version	The column shows the version of the SNMP agent used by the switch. Three SNMP versions are supported, including SNMP V1, SNMP V2c, and SNMP V3. SNMP V1/SNMP V2c agents use a community string to authenticate the SNMP management station and SNMP agent. SNMP V3 requires MD5 or DES authentication which will encrypt data for higher data security.
Community String	The default community string that provides monitoring or read capability is often public. The default management or write community string is often private. Do not leave the community string to public on any of your SNMP agents. Since anyone with SNMP manager software installed on his/her PC can make changes to your SNMP agents, this will expose your SNMP agent

	to any SNMP management station.
Privilege	Choose the appropriate access level from the dropdown list. Read Only: The community string can only read the values of MIB objects. Write Only: The community string can read and write the values of MIB objects. Read and Write: The community string can read and write the values of MIB objects and send MIB object values for a trap and inform messages.
Apply	Click to apply the configurations

1.9.2 Trap Setting

SNMP traps are event reports sent to a list of managers configured to receive event notifications when an error occurs. SNMP traps provide the value of one or more instances of management information. A trap manager is a management station that receives traps. If no trap manager is defined, no traps will be issued. You can create a trap manager by entering the IP address of the station and a community string.

SNMP - Trap Setting

Trap Server Setting

Add
Trap Server Profile

Renove

Label	Description
Server IP	The IP address of the server to receive traps
Community	The community string for authentication
Trap Version	The trap version. V1 and V2c are supported.

Add	Click to add the trap sever to the trap server profile.
Trap Server Profile	Shows a list of trap servers, including their community strings and trap versions.
Remove	Click to remove a trap server from the profile

1.9.3 SNMPV3

Unlike SNMP v1 and v2 which uses community strings for authentication, SNMP v3 uses username/password authentication, along with an encryption key. Therefore, SNMPv3 provides greater security features for authentication, privacy, and access control. The switch supports SNMP v3 which can be configured in the following page.

MIBView Table

Note:
Any modification of SNMPv3 tables might cause MIB accessing rejection. Please take notice of the causality between the tables before you modify these tables.

Label	Description
Context Table	Context is a collection of management information accessible by a SNMP entity and is stored in the context table. You can assign a context name to the context table and click Apply to change the name.
User Table	You can manage existing and add new user profiles in this section. In Current User Profiles, select an entry you want to remove and llick Remove. In New User Profiles, specify the following information of a new entry: User ID: the username of the user Authentication Password: the authentication password for the user Privacy Password: the private password for the user Click Add after inputting the information.
Group Table	You can manage existing and add new group content in this section. In Current Group Content, select an entry you want to remove and click Remove. In New Group Table, specify the following information for a new entry: Security Name (User ID): the name of the user to be added to the

\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { table. } \\
\text { Group Name: the name of the group } \\
\text { Click Add after inputting the information. }\end{array} \\
\hline & \begin{array}{l}\text { The Access table lists the access rights and restrictions of the } \\
\text { various groups. 1. You can manage existing and add new tables in } \\
\text { this section. In Current Access Tables, select an entry you want to } \\
\text { remove and click Remove. In New Access Table, specify the } \\
\text { following information for a new entry: } \\
\text { Context Prefix: the context name of the user as defined in the } \\
\text { context table. } \\
\text { Group Name: set up the group. } \\
\text { Security Level: the security level of the user Table } \\
\text { Context Match Rule: the rule for matching context } \\
\text { Read View Name: the read view name provided for the v3 user } \\
\text { Write View Name: the write view name provided for the v3 user. } \\
\text { Notify View Name: the notify view name provided for the v3 user. } \\
\text { Click Add after inputting the information. }\end{array}
$$

\hline You can configure MIB views for users and groups by entering the

OID number of the MIB view. A MIB view consists of a family of

view subtrees which may be individually included in or

(occasionally) excluded from the view. Each view subtree is efined

by a combination of an OID subtree together with a bit string mask.

The view table is indexed by the view name and subtree OID\end{array}\right\}\)| values. |
| :--- |
| In New MIBview Table, enter the following information: |
| ViewName: the name of the view |
| Sub-Oid Tree: fill in the Sub OID. |
| Type: select the type as excluded or included. |
| Click Add after inputting the information. |

1.10 Security

By setting up a secure IP list, only IP addresses in the list can manage the switch according to the management mode you have specified (WEB, Telnet, SNMP, etc.).

Management Security

Mode: Disable v

- Enable WEB(HTTP) Management
- Enable HTTPS Management
\checkmark Enable Telnet Management
Enable SSH Management
- Enable SNMP Management

Secure IP List

Secure IP1	0.0 .0 .0
Secure IP2	0.0 .0 .0
Secure IP3	0.0 .0 .0
Secura TPA	0000

Label	Description
MODE	Enable/Disable the IP security function.
Enable WEB (HTTP) Management	Mark the blank to enable WEB (HTTP) Management.
Enable Management	HTTPS
Enable Management\quad Melnet	Mark the blank to enable WEB (HTTPS) Management.
Enable SSH Management	Mark the blank to enable WEB Management.
Enable Management	Mark the blank to enable SNMP Management.
Apply	Click o set the configurations.
Help	Show help file.

Static MAC Forwarding

You can use static MAC addresses to provide port security for the switch. With this method,
only the frames with the MAC addresses in this list will be forwarded, otherwise will be discarded.

Static MAC Forwarding
MAC Address: \square
VLAN ID:

Port No: P1 v

	MAC Address	VLAN ID

Delete Help

Label	Description
MAC Address	Enter a MAC address for a specific port.
VLAN ID	Select VLAN Number
Port NO.	Select a switch port
Add	Add the MAC address and port information.
Delete	Deletes an entry
Help	Shows help file

MAC Blacklist

You can block specific devices from network access by creating a MAC blacklist.MAC blacklists will prevent traffic from forwarding to specific MAC addresses in the list. Any frames forwarding to the MAC addresses in this list will be discarded. As a result, the target device will never receive any frame.

MAC Blacklist

MAC Address : \square

Add Help

MAC Address VLAN ID

Delete Help

Label	Description
MAC Address	Enter a MAC address for a specific port.
VLAN ID	Select VLAN number
Port NO.	Select a switch port
Add	Add the MAC address and port information.
Delete	Delete an entry
Help	Shows help file

1.10.1 802.1x

The IEEE 802.1X standard defines a port-based access control procedure that prevents unauthorized access to a network by requiring users to first submit credentials for authentication. One or more backend servers (RADIUS) determine whether the user is allowed access to the network.

In an 802.1X network environment, the user is called the supplicant, the switch is the authenticator, and the RADIUS server is the authentication server. The switch acts as the man-in-the-middle, forwarding requests and responses between the supplicant and the authentication server. Frames sent between the supplicant and the switch are special 802.1X frames, known as EAPOL (EAP Over LANs) frames which encapsulate EAP PDUs. Frames sent between the switch and the RADIUS server are RADIUS packets. RADIUS packets also encapsulate EAP PDUs together with other attributes like the switch's IP address, name, and the supplicant's port number on the switch. EAP is very flexible as it allows for different authentication methods, like MD5-Challenge, PEAP, and TLS. The important thing is that the authenticator (the switch) does not need to know which authentication method the supplicant and the authentication server are using, or how many information exchange frames are needed for a particular method. The switch simply encapsulates the EAP part of the frame into
the relevant type (EAPOL or RADIUS) and forwards it.
When authentication is complete, the RADIUS server sends a special packet containing a success or failure indication. Besides forwarding the result to the supplicant, the switch uses it to open up or block traffic on the switch port connected to the supplicant.

Note: in an environment where two backend servers are enabled, the server timeout is configured to X seconds (using the authentication configuration page), and the first server in the list is currently down (but not considered dead), if the supplicant retransmits EAPOL Start frames at a rate faster than X seconds, it will never be authenticated because the switch will cancel on-going backend authentication server requests whenever it receives a new EAPOL Start frame from the supplicant. Since the server has not failed (because the X seconds have not expired), the same server will be contacted when the next backend authentication server request from the switch. This scenario will loop forever. Therefore, the server timeout should be smaller than the supplicant's EAPOL Start frame retransmission rate.

802.1x - Radius Server

Radius Server Setting

$\mathbf{8 0 2 . 1 x}$ Protocol	Enable \vee
Radius Server IP	192.168 .16 .3
Server Port	1812
Accounting Port	1813
Shared Key	12345678
NAS, Identifier	NAS_L2_SWITCH

Advanced Setting

Quiet Period	60
TX Period	30
Supplicant Timeout	30
Server Timeout	30
Max Requests	2
Re-Auth Period	3600

Label	Description
$\mathbf{8 0 2 . 1 x}$ Protocol	Enables or disables 802.1X Radius server
Radius Server IP	IP address of the authentication server
Server Port	The UDP port number used by the authentication server to authenticate

Accounting Port	The number of the UDP port that the RADIUS server uses for accounting requests.
Shared Key	A key shared between the switch and authentication server
NAS, Identifier	A string used to identify the switch.
Quiet Period	The time interval between authentication failure and the start of a new authentication attempt.
Tx Period	The time that the switch waits for response to an EAP request/identity frame from the client before resending the request.
Supplicant Timeout	The period of time the switch waits for a supplicant respond to an EAP request.
Server Timeout	The period of time the switch waits for a Radius server respond to an authentication request.
Max Requests	The maximum number of times to retry sending packets to the supplicant.
Re-Auth Period	The period of time after which clients connected must be re-authenticated
Apply	Click to apply the configurations
Help	Shows help file

The 802.1x authorized mode of each port can be set in the following dialog:
802.1x - Port Authorize Setting

802.1x - Port Authorize State

Port No.	Port Authorize State
Port.01	Accept
Port.02	Accept
Port.03	Accept
Port.04	Accept
Port.05	Accept
Port.06	Accept
Port.07	Accept
Port.08	Accept
G1	Accept
G2	Accept

Label	Description
Mode \quad Authorize	Reject: force the port to be unauthorized Accept: force the port to be authorized Authorize: the state of the port is determined by the outcome of the 802.1x authentication Disable: the port will not participate in the 802.1x portocol
Apply	Click to apply the configurations
Help	Shows help file

1.10.2 IP Guard

Port Setting

This page allows you to configure IP guard functions for each port, an intelligent and user-friendly IP security method. It protects the network from unknown IP (IPs not in the allowed list) attack. Unauthorized IP traffic will be blocked.

Port No.	Mode	
Port.01	Monitor \vee	
Port.02	Security \vee	
Port.03	Disabled \vee	
Port.04	Disabled \vee	

Label	Description
Mode	Disabled: disables the function Monitor: scans the IP information of the connected device before

	implementing further actions Security: performs security actions without scanning the information of the connected device
Apply	Click to apply the configurations
Help	Shows help file

Allow List

By creating an allow list, traffic from the IP addresses in the list will be allowed.
IP Guard - Allow List

Delete	IP	MAC	Port	Status
\square	192.168 .10 .66	001 E94112547	G1	Active \vee

Apply

Add Help

Label	Description
IP	IP address of the allowed entry
MAC	MAC address of the allowed entry
Port	Port number of the allowed entry Status Active: allows the IP traffic. Suspend: blocks the IP traffic.
Delete	Check to delete an entry

Super-IP List

A super-IP list enables you to give full access to the switch to the user you specify. Devices with the IP addresses listed in the table will be able to manage the switch disregarding the rule you have set.

Monitor List

You can create a monitor list to monitor IP traffic of individual ports automatically.

IP Guard - Monitor List

Add to Allow List	IP	MAC	Port	Time
\square	192.168 .10 .66	001 E 94988989	Port.08	$1970010319: 20$

Apply Reload Clear Help

Label	Description
IP	IP address of the port
MAC	MAC address of the port
Port	The port number you want to monitor
Time	The time when the entry is logged.
Add to Allow List	Check to add the entry to the allow list

1.10.3 TACACS+

In this page, use can setting TACACS+ Server info and Client Authentication Method, if want use this function first need ready TACACS+ Server .

TACACS+

Server Configuration

Enabled	Server IP Address	Port	Secret Key
\square	0.0 .0 .0	49	
\square	0.0 .0 .0	49	
\square	0.0 .0 .0	49	
\square	0.0 .0 .0	49	
\square	0.0 .0 .0	49	

Client Configuration

Client	Authentication Method	
Console	Local	v
Telnet	Local	v
Web	Local	v

Apply

Label	Description
Enable check box	Enable / disable server connect
Server IP Address	Input TACACS+ Server IP Address .
Port	Input TACACS+ use Port number
Secret key	Input TACACS+ use key value(need same TACACS+ Server)
Authentication Method	User can select Authentication Method , support local / TACACS +

1.11 Warning

The switch supports several alerting methods, including SYSLOG, e-mail, and fault relay. These methods enable you to monitor switch status remotely. When an event occurs, the system will send an alert to your appointed servers.

1.11.1 Fault Relay

When any selected fault event happens, the Fault LED on the switch panel will light up and the electric relay will signal at the same time. You can set the switch to trigger alarms when power fails or ports are disconnected.

Fault Relay Alarm

Power Failure

Port Link Down/BrokenPort. 01Port. 02Port. 03Port. 04Port. 05Port. 07Port. 06G1G3

Apply Help

1.11.2 SYSLOG Setting

SYSLOG is a protocol that allows a device to send event notification messages across IP networks to event message collectors. It permits separation of the software that generates messages from the system that stores them and the software that reports and analyzes them. As Syslog messages are UDP-based, the sender and receiver will not be aware of it if the packet is lost due to network disconnection and no UDP packet will be resent.

SYSLOG Setting

Syslog Mode	Both $\quad \vee$
Syslog Server IP Address	192.168 .10 .66

Apply Help

Label	Description
Syslog Mode	Disable: disables SYSLOG

	Client Only: logs in to a local system Server Only: logs in to a remote SYSLOG server Both: logs in to a local and remote server.
SYSLOG Server IP Address	The IP address of the remote SYSLOG server
Apply	Click to apply the configurations
Help	Shows help file

1.11.3 SMTP Setting

SMTP (Simple Mail Transfer Protocol) is a protocol for transmitting e-mails across the Internet. By setting up SMTP alert, the device will send a notification e-mail when a user-defined event occurs.

SMTP Setting
E-mail Alert: Enable

Label	Description
E-mail Alert	Enables or disables transmission of system warnings by e-mail
SMTP Server IP Address	The IP address of the SMTP server to receive the notification e-mail
Mail Subject	Subject of the mail
Sender	The email account to send the alert
Authentication	■ Username: the authentication username ■assword: the authentication password ■enfirm Password: re-enter password
Recipient E-mail	The recipient's e-mail address. A mail allows for 6 recipients.

Address	
Apply	Click to activate the configurations
Help	Shows help file

1.11.4 Event Selection

The device supports both SYSLOG and SMTP alerts. Check the corresponding box to enable the system event warning method you want. Please note that the checkboxes will gray out if SYSLOG or SMTP is disabled.

Event Selection
System Event

Event Type	Syslog	SMTP
Device cold start	$\boxed{ }$	\square
Device warm start	\square	\square
Authentication failure	\square	\square
O-Ring topology change	\square	\square

Port Event

Port	Syslog		SMTP
Port.01	Link Down	\vee	\vee
Port.02	Disable	\vee	Disable
		Link Up \& Link Down \vee	

Label	Description
Device cold start	Sends alerts when you restart the device using the power button on your PC.
Device warm start	Sends alerts when you restart the device using the Reset button or software.
Authentication Failure	Sends alerts when SNMP authentication fails
O-Ring topology change	Sends alerts when O-Ring topology changes
	Sends alerts when the port meets a specified condition. Available options include: ■ Disable: disables alert function ■ Link Up: sends alerts when port is connected ■ Link Down: sends alerts when port is not connected ■ Link Up \& Link Down: sends alerts when port is connected and disconnected

Apply	Click to apply the configurations
Help	Shows help file

1.12Monitor and Diag

1.12.1 System Event Log

If a system log client is enabled, the system event log will be shown in this table.

System Event Log

2: Jan 3 19:35:12 : SYSLOG Server:192.168.10.66
1: Jan 3 19:35:12 : SYSLOG Enable!

Page. 1

Relcad Clear Help

Label	Description
Page	The page number of the selected LOG
Reload	Click to refresh the information in this page
Clear	Clear log
Help	Shows help file

1.12.2 MAC Address Table

A MAC address tablet is a table in a network switch that maps MAC addresses to ports. The switch uses the table to determine which port the incoming packet should be forwarded to.

Entries in a MAC address table fall into two types: dynamic and static entries. Entries in a static MAC table are added or removed manually and cannot age out by themselves. Entries in a dynamic MAC tablet will age out after a configured aging time. Such entries can be added by learning or manual configuration.

Aging Configuration

Aging enables the switch to track only active MAC addresses on the network and flush out MAC addresses that are no longer used, thereby keeping the table current. You can configure aging time by entering a value in the MAC Address Aging Time box. Note that aging time must be a multiple of 15 .

MAC Table Learning

The switch can add the address and port on which the packet was received to the MAC table if the address does not exist in the table by examining the source address of each packet received on a port. This is called learning. It allows the MAC table to expand dynamically. If the learning mode for a given port is grayed out, it means another module is in control of the mode, and thus the user cannot change the configurations. An example of such a module is MAC-Based authentication under 802.1X.

MAC Address Table
Port No. : ALL \vee

Type	MAC Address	Port No.
Static	001122334455	Port.06
Dynamic	001 E94988989	Port.08
Static	01005 E 000006	Port.05

Dynamic Address Count : 1
Static Address Count : 2

Flush Table Help

MAC Address Aging Setting

MAC Address Aging Time: 5 min.
Auto Flush Table When Ports Link Down: Disable \vee MAC Address Auto Learning: Enable

Apply Help

Label	Description
Port NO. :	Shows all MAC addresses mapped to a selected port in the table
Flush Table	Clears all MAC addresses in the table

Help	Shows help file.
MAC Address Aging Time	The time of an entry stays valid in the table
Auto Flush Table When Ports Link Down	Clears the MAC table automatically when ports are disconnected
MAC Address Auto Learning	Enables or disables MAC learning function
Apply	Click to apply the configurations.

1.12.3 Port Overview

This page provides an overview of general traffic statistics for all switch ports.

Port Overview

Port No.	Type	Link	State	TX Good Packet	TX Bad Packet	RX Good Packet	RX Bad Packet	TX Abort Packet	Packet Collision
Port.01	100TX	Down	Forwarding	0	0	0	0	0	0
Port.02	100TX	Down	Forwarding	0	0	0	0	0	0
Port.03	$100 T X$	Down	Forwarding	0	0	0	0	0	0
Port.04	$100 T X$	Down	Forwarding	0	0	0	0	0	0

Label	Description
Type	Shows port speed and media type.
Link	Shows port link status
State	Shows port status
TX GOOD Packet	The number of good packets sent by this port
TX Bad Packet	The number of bad packets sent by this port
RX GOOD Packet	The number of good packets received by this port
RX Bad Packet	The number of bad packets received by this port
TX Abort Packet	The number of packets aborted by this port
Packet Collision	The number of times a collision is detected by this port
Clear	Clears all counters
Help	Shows help file

1.12.4 Port Counters

This page shows statistic counters for the port. The Clear button will reset all counters to zero.

Port Counters

Port No. : P1 v

ifinOctets	0	ifinUcastPkts	
ifinMulticastPkts	0	ifInBroadcastPkts	
ifOutOctets	0	ifOutUcastPkts	
ifOutMulticastPkts	0	ifOutBrocastPkts	
ifOutDiscards	0	dot1dTpPortinDiscards	
dot3StatsSingleCollisionFrames	0	dot3StatsMultipleCollisionFrames	
dot3StatsDeferredTransmissions	0	dot3StatsLateCollisions	
dot3StatsExcessiveCollisions	0	dot3StatsSymbolErrors	
dot3ControlinUnknownOpcodes	0	dot3InPauseFrames	
dot30utPauseFrames	0	etherStatsDropEvents	
etherStatsBroadcastPkts	0	TX_etherStatsBroadcastPkts	
etherStatsMulticastPkts	0	TX_etherStatsMulticastPkts	
etherStatsCRCAlignErrors	0	etherStatsUndersizePkts	
RX_etherStatsUndersizePkts	0	RX_etherStatsUndersizeDropPkts	
TX_etherStatsUndersizePkts	0	etherStatsOversizePkts	
RX_etherStatsOversizePkts	0	TX_etherStatsOversizePkts	
etherStatsFragments	0	etherStatsJabbers	
etherStatsCollisions	0	etherStatsPkts640ctets	
RX_etherStatsPkts640ctets	0	TX_etherStatsPkts640ctets	
etherStatsPkts65to1270ctets	0	RX_etherStatsPkts65to1270ctets	
TX_etherStatsPkts65to1270ctets	0	etherStatsPkts128to2550ctets	
RX_etherStatsPkts128to2550ctets	0	TX_etherStatsPkts128to2550ctets	
etherStatsPkts256to5110ctets	0	RX_etherStatsPkts256to5110ctets	

Label	Description
InGoodOctetsLo	The lower 32-bits of the 64-bit InGoodOctets counter. This field indicates the total length of all good Ethernet frames received.
InGoodOctetsHi	The upper 32-bits of the 64-bit InGoodOctets counter. This field indicates the total length of all good Ethernet frames received.
InBadOctets	The total length of all bad Ethernet frames received. OutFCSErr a frame is modified during transmission (e.g., to add or remove a tag), the frame's original FCS is inspected before a new FCS is added to a modified frame. If the original FCS is invalid, the new FCS is made invalid too and this counter is incremented.
InUnicasts	The number of good frames received that have a Unicast destination MAC address.
Deferred	The total number of successfully transmitted frames without

	collision but are delayed because the medium is busy during the first attempt. This counter is applicable in half-duplex only.
InBroadcasts	The number of good frames received that have a Broadcast destination MAC address.
InMulticasts	The number of good frames received that have a Multicast destination MAC address.
Octets64	Total frames received (and/or transmitted) with a length of exactly 64 octes, including those with errors.
Octets127	Total frames received (and/or transmitted) with a length of between 65 and 127 octes, including those with errors.
Octets255	Total frames received (and/or transmitted) with a length of between 128 and 255 octes, including those with errors.
Octets511	Total frames received (and/or transmitted) with a length of between 256 and 511 octes, including those with errors.
Octets1023	Total frames received (and/or transmitted) with a length of between 512 and 1023 octes, including those with errors.
OctetsMax	Total frames received (and/or transmitted) with a length of between 1024 and MaxSize octes, including those with errors.
OutOctetsLo	The lower 32-bit of the 64-bit OutOctets counter. This field indicates the total length of all Ethernet frames sent from this MAC address.
OutOctetsHi	The upper 32-bit of the 64-bit OutOctets counter. This field indicates the total length of all Ethernet frames sent from this MAC address.
OutUnicasts	The number of frames sent with an Unicast destination MAC address.
Excessive	The number frames dropped in the transmitted MAC address because the frame experiences 16 consecutive collisions. This counter is applicable in half-duplex only and only when DiscardExcessive is one.
OutBroadcasts	The number of good frames sent with a Broadcast destination MAC address
Single	The total number of successfully transmitted frames that experiences exactly one collision. This counter is applicable in half-duplex only.
OutPause	The number of good Flow Control frames sent
InPause	The number of good Flow Control frames received

Multiple	The total number of successfully transmitted frames that experience more than one collision. This counter is applicable in half-duplex only.
Undersize	Total frames received with a length of less than 64 octets but with a valid FCS
Fragments	Total frames received with a length of more than 64 octets and with an invalid FCS
Oversize	Total frames received with a length of more than MaxSize octets but with a valid FCS
Jabber	Total frames received with a length of more than MaxSize octets but with an invalid FCS
InMACRcvErr	Total frames received with an RxErr signal from the PHY
InFCSErr	Total frames received with a CRC error not counted in Fragments, Jabber or RxErr.
Collisions	The number of frames for which one or more collisions occurred when the frames were sent, including single, multiple, excessive, or late collisions. This counter is applicable in half-duplex only.
Late	When a collision is detected by a station after it has sent the 512th bit of its frame, it is counted as a late collision. This counter is applicable in half-duplex only.

1.12.5 Port Monitoring

The switch supports several types of port monitoring including TX (egress) only, RX (ingress) only, and both TX/RX monitoring. TX monitoring sends any data that egress out checked TX source ports to a selected TX destination port as well. RX monitoring sends any data that ingress in checked $R X$ source ports out to a selected $R X$ destination port as well as sending the frame where it normally would have gone. Note that keep all source ports unchecked in order to disable port monitoring.

Port Monitoring

Port No.	Destination Port		Source Port	
	RX	TX	RX	TX
Port.01	\odot	\odot	\square	\square
Port.02	\bigcirc	\bigcirc	\square	\square
Port.03	\bigcirc	\bigcirc	\square	\square
Port.04	\bigcirc	\bigcirc	\square	\square

Label \quad Description

Destination Port	The port will receive a copied frame from source port for monitoring purpose.
Source Port	Check to monitor specific ports
TX	The frames transmitted by a port
RX	The frames received by a port
Apply	Click to activate the configurations.
Clear	Clears all checked boxes (disable the function)
Help	Shows help file

1.12.6 Traffic Monitoring

By enabling traffic monitoring function, the switch will send out an SYSLOG event notification or SMTP e-mail when the traffic becomes too large.

Traffic Monitor

Port No.	Monitored-Counter	Time-Interval (1~300s)		Increasing-Quantity	
Port. 01	RXOctet $\quad \vee$	3	3	1000	
Port. 02	RX Broadcast \downarrow	3	3	1000	
Port. 03	RXMulticast v	3	3	1000	
Port. 04	RXUnicast $\quad \vee$	3	3	1000	
Port. 05	RX Non-Unicast \downarrow	3	3	1000	
Dortne	Disahle	3	8	1000	

Label	Description
Monitored-Counter	Monitor the incoming traffic by bandwidth or number of packets. Available options include: RX Octet: calaculates the total bandwidth consumed by incoming traffic RX Broadcast: calaculates the number of broadcast packets RX Multicast: calaculates the number of multicast packets RX Unicast: calaculates the number of unicast packets RX Non-Unicast: calaculates the total number of multicast and broadcast packets Disable: disables the function
Time-Interval	Sets the time interval of counting
Increasing	Specify a threahold for the counter. When the result of calucation exceeds the value, an alert will be issued.
Quantity	

Event Alarm	Specifies alarm type (SYSLOG or SMTP)

1.12.7 SFP Monitor

DDM function, can pass SFP module which supports DDM function, measure the temperature of the apparatus .And manage and set up event alarm module through DDM WEB

SFP Monitor

Port No.	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Vcc (\mathbf{V})	TX Bias(mA)	TX Power($\boldsymbol{\mu W)}$	$\mathbf{(d B m)}$	RX Power($\boldsymbol{\mu W} \mathbf{)}$	$(\mathbf{d B m})$
G1	N/A						
G2	N/A						
G3	N/A						
G4	N/A						

Warning Temperature : $75 \quad{ }^{\circ} \mathrm{C}(0 \sim 100)$
Event Alarm : \square syslog \square sMTP
Apply Refresh

1.12.8 Ping

This command sends ICMP echo request packets to another node on the network. Using the ping command, you can see if another site on the network can be reached.

Ping
IP Address : 192.168 .10 .66
Active Help

Ping Log

Pinging 192.168.10.66: seq 1 sent... Reply seq 1 from 192.168.10.66

Pinging 192.168.10.66: seq 2 sent...
Reply seq 2 from 192.168.10.66

After you press Active, four ICMP packets will be transmitted, and the sequence number and roundtrip time will be displayed upon reception of a reply. The page refreshes automatically until responses to all packets are received, or until a timeout occurs.

Label	Description
IP Address	Enter the IP address that you want to detect

Active	Click to send ICMP packets

1.13 Save Configuration

Click Save Configuration whenever you change a configuration to save current configurations; otherwise, the changes you make will be lost when the power is off or system is reset.

Save Configuration

Save Help

Label	Description
Save	Saves all configurations
Help	Shows help file

1.14 Factory Default

This function is to force the switch back to the original factory settings. You can decide to keep current IP address settings or username/password by checking in the boxes.

Factory Default

Keep current IP address setting?Keep current username \& password?
Reset Help

1.15 System Reboot

You can reset the stack switch on this page. After reset, the system will boot normally as if you have powered on the devices.

System Reboot

Boot from:

© image bank 0 (k3.04 v1.00 built at May 21 2012,13:54:14) image bank 1: empty

Reboot Now

1.16Logout

Logout your device .

